c-fos expression precedes osteogenic differentiation of cartilage cells in vitro
نویسندگان
چکیده
We have investigated the temporal pattern of expression of c-fos in cartilage cells in mouse mandibular condyles. During in vitro cultivation, the progenitor cells in this organ differentiate to osteoblasts, and hypertrophic chondrocytes start to show features indicative of osteogenic differentiation. Prior to these processes we observed two distinct patterns of c-fos expression. High, transient c-fos expression was found in the entire tissue within 30 min of culture. This type of c-fos expression appeared to result from mechanical forces applied during dissection. The second type of c-fos expression appeared in individual cells in the zone of hypertrophic chondrocytes. A varying number of formerly quiescent chondrocytes expressed high levels of c-fos mRNA after between 30 min and 10 d in culture, with a peak in the number of cells between days 1 and 3. c-fos expression in these cartilage cells was followed by DNA replication and expression of genes typifying osteoblastic differentiation. After 7 d in culture, groups of cells with the typical ultrastructural features of osteoblasts, and surrounded by an osteoid-like matrix, were observed in single chondrocyte-type lacunae, suggesting division of chondrocytes and differentiation to osteoblasts. The data suggest that c-fos may play a crucial role in the perturbation of determined pathways of skeletoblast differentiation and in the regulation of endochondral bone formation.
منابع مشابه
Comparison of the effects of extremely low-frequency Electromagnetic field and Betaine on in vitro osteogenic differentiation of human adipose tissue derived-mesenchymal stem cells
Background & Aim: Extremely low-frequency electromagnetic field (ELF-EMF) and betaine are safe factors in bone fracture repair. This study aimed to compare the effects of these two stimuli on osteogenic differentiation of human adipose stem cells (hADSCs). Methods: After obtaining written informed consent, cells were extracted from abdominal adipose tissue and then cultured in vitro until the ...
متن کاملStudy of Differentiation Potential of the Dedifferentiated Chondrocytes From Rat Articular Cartilage into Skeletal Cell Lineages
Purpose: Dedifferentiation of the chondrocyte from rat articular cartilage with multiple subcultures and study of the redifferentiation potential of the cells into bone, cartilage and fat cell lineages. Materials and Methods: In this experimental study, chondrocytes from rat articular cartilage were isolated and expanded through several successive subcultures during which the expression levels ...
متن کاملCapability of Cartilage Extract to In Vitro Differentiation of Rat Mesenchymal Stem Cells (MSCs) to Chondrocyte Lineage
The importance of mesenchymal stem cells (MSCs), as adult stem cells (ASCs) able to divide into a variety of different cells is of utmost importance for stem cell researches. In this study, the ability of cartilage extract to induce differentiation of rat derived omentum tissue MSCs (rOT-MSCs) into chondrocyte cells (CCs) was investigated. After isolation of rOT-MSCs, they were co-cultured with...
متن کاملReview Paper: Embryonic Stem Cell and Osteogenic Differentiation
Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells, including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cell...
متن کاملBiological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow
Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 111 شماره
صفحات -
تاریخ انتشار 1990